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 The purpose of this study was to examine four pre-service middle and high 

school mathematics teachers‘ understanding of the directly and inversely 

proportional relationships presented through hands-on and real-world missing-

value word problems. The problems included single and multiple proportions, 

and the PSTs were provided with plastic gears and a mini number balance 

system in the hands-on problems. A case study methodology with multiple cases 

was used in designing this study. Analysis of the semi-structured interviews 

revealed that for the PSTs, identifying directly proportional relationships was 

easier than identifying inversely proportional relationships. The PSTs recognized 

inversely proportional relationships in the hands-on problems but had difficulty 

recognizing them in the missing-value word problems. Therefore, the inclusion 

of the hands-on problems appeared to facilitate the PSTs‘ understanding of the 

inversely proportional relationships. When forming multiplicative relationships 

between quantities, they mostly reasoned about within measure spaces. 

Furthermore, when determining directly and inversely proportional relationships, 

they usually attended to the qualitative relationships and constancy of the rate of 

change. In the multiple proportions problems, the PSTs had difficulty finding a 

mathematical formula that expressed relationships between quantities compared. 

This result suggested possible constraints in their understanding of the 

multiplicative relationships when more than two quantities were present. 
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Introduction 

 

Understanding ratios, proportions, and proportional reasoning constitutes a key area of school mathematics that 

is essential for students to learn but difficult for teachers to teach (Lobato & Ellis, 2010, p. 1). Proportional 

reasoning is also essential in understanding many situations in science and everyday life (Cramer & Post, 1993). 

For example, in the middle grades, students need to understand and use ratios and proportions to represent 

quantitative relationships (National Council of Teachers of Mathematics [NCTM], 2000), and they should be 

able to analyze proportional relationships and use them to solve real-world and mathematical problems 

(Common Core State Standards Initiative [CCSSI], 2010). Therefore, proportional reasoning plays an important 

role in students‘ mathematical development, and it is an essential concept in their elementary school 

mathematics and higher mathematics (Lesh, Post, & Behr, 1988).  

 

Karplus, Pulos, and Stage (1983a) describe proportional reasoning as a term that indicates reasoning in a 

―system of two variables between which there exists a linear functional relationship‖ (p. 219), and for them 

proportional reasoning leads one to reach conclusions about a condition or phenomenon that can be explained 

by a constant ratio. Lesh et al. (1988) view proportional reasoning as a form of mathematical reasoning that 

entails ―a sense of co-variation and of multiple comparisons, and the ability to mentally store and process 

several pieces of information‖ (p. 93). Furthermore, according to Lamon (2007), proportional reasoning refers to 

―detecting, expressing, analyzing, explaining, and providing evidence in support of assertions about proportional 

relationships‖ (p. 647). In this study, Lamon‘s (2007) definition is used to make sense of the PSTs‘ responses.  

 

The Common Core State Standards for Mathematics states that being able to reason proportionally, students 

should ―Decide whether two quantities are in a proportional relationship (7.RP.2a)‖ (CCSSI, 2010, p. 48). There 

are two types of proportional relationships between quantities: directly proportional relationships and inversely 

proportional relationships. Lamon (2007) states that y = k * x is the mathematical model for a directly 

proportional relationship. In this model, the variables y and x represent quantities that form a constant ratio, and 
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the amount k represents the constant of proportionality. In a directly proportional relationship, the quotient of 

the two covarying quantities always remains constant. Whereas, the mathematical model for an inversely 

proportional relationships is y * x = k, in which the product of the values of quantities always remains constant.  

 

Despite the given importance and effort spent on teaching ratios and proportions, many studies (e.g., Clark, 

2008; De Bock, Verschaffel, & Janssens, 1998; Hart, 1984; Modestou & Gagatsis, 2007) have reported 

students‘ difficulties and poor performances on proportional relationships. Furthermore, a small number of 

studies (e.g., Ben-Chaim, Keret, & Ilany, 2007; Cramer, Post, & Currier, 1993; Hull, 2000; Izsák & Jacobson, 

2013; Simon & Blume, 1994) on pre-service teachers‘ (PSTs) reasoning about proportional relationships have 

reported that PSTs‘ difficulties are often similar to those of students.‘ One of the problems of teaching and 

learning proportional relationships is that traditional proportion instruction places an emphasis on rule 

memorization and rote computations (Izsák & Jacobson, 2013; Singh, 2000). Hence, students and teachers 

depend severely on using the cross-multiplication strategy and rote computations when solving proportion 

problems (Arican, 2018a; Arican, 2018b). Although the cross-multiplication algorithm is effective in solving 

proportion problems, it hinders students‘ and PSTs‘ understanding of multiplicative relationships between 

quantities (Farrell & Farmer, 1985; Lamon, 2007; Riley, 2010; Singh, 2000; Stemn, 2008). 

 

A second problem with teaching and learning proportional relationships is that students and PSTs usually tend 

to judge nonproportional relationships to be proportional and apply proportional strategies for nonproportional 

situations (e.g., Arican, 2018b; De Bock et al., 1998; Fisher, 1988; Izsák & Jacobson, 2013; Lim, 2009; 

Modestou & Gagatsis, 2007; Riley, 2010; Singh, 2000; Van Dooren, De Bock, Janssens, & Verschaffel, 2007). 

In addition, the following problems have been also reported in the literature: Students and PSTs are likely to use 

additive strategies to solve proportion problems (Hart, 1984; Misailadou & Williams, 2003; Riley, 2010; Simon 

& Blume, 1994); they have difficulty creating suitable reciprocal multiplicative relationships for 

nonproportional problems (Izsák & Jacobson, 2013); and they have difficulty understanding ratio-as-measure 

and the invariance of a ratio (Simon & Blume, 1994). 

 

In contrast to the large body of studies on students‘ proportional reasoning, a small number of studies aimed at 

investigating PSTs‘ and teachers‘ proportional reasoning (Lamon, 2007; Lobato, Orrill, Druken, & Jacobson, 

2011). In particular, only a few studies have reported PSTs‘ and teachers‘ proportional reasoning regarding 

inverse proportions (e.g., Fisher, 1988; Izsák & Jacobson, 2013; Lim, 2009; Riley, 2010), and even fewer 

researchers have studied multiple proportions (e.g., Vergnaud, 1983, 1988, 2009). Hence, there is a need for an 

investigation on examining PSTs‘ understanding of directly and inversely proportional relationships in the 

mathematics education literature. PSTs must have a robust understanding of directly and inversely proportional 

relationships to develop their future students‘ comprehension of these important concepts. Therefore, this study 

contributes to the current literature on mathematics education by investigating PSTs‘ understanding of directly 

and inversely proportional relationships.  

 

In the existing studies on proportions, researchers investigated teachers‘ proportional reasoning mostly using 

missing-value word problems, which usually involved a single proportional or nonproportional relationship. 

Similarly, instruction on proportions traditionally uses missing-value word problems in teaching. Hence, in this 

study, a combination of hands-on, in which plastic gears and a mini number balance system were provided, and 

real-world missing-value word problems were used in collecting the PSTs‘ responses. The use of plastic gears 

and the mini number balance system expected to provide hands-on experiences and generate a checking 

mechanism for PSTs, which would eventually help them have a robust understanding of directly and inversely 

proportional relationships. Furthermore, in addition to the single proportion problems, the multiple proportions 

problems were also included in the study. By the inclusion of the multiple proportions problems, the PSTs‘ 

proportional reasoning in complex situations was investigated. Thus, the following research questions were 

investigated in this study:  

 

1. How do pre-service mathematics teachers reason about proportions in single and multiple proportions 

problems? 

2. How does inclusion of hands-on problems contribute to the pre-service mathematics teachers‘ 

understanding of directly and inversely proportional relationships? 

 

 

Theoretical Framework 
 

The theoretical framework of this study was developed drawing on the multiplicative conceptual field theory 

(e.g., Vergnaud, 1983, 1988, 2009). The multiplicative conceptual field theory was used in explaining 
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multiplicative structures of the problems presented in the mathematical tasks and interpreting the PSTs‘ 

responses.  

 

 

The Multiplicative Conceptual Field Theory 

 

According to the draft Ratio and Proportional Relationships Progression (Common Core Standards Writing 

Team, 2011), ―The study of ratios and proportional relationships extends students‘ work in measurement and in 

multiplication and division in the elementary grades‖ (p. 2). Moreover, elementary school allows students to 

develop meanings for fractions and multiplication that have important foundations on which students build an 

understanding of ratios, proportions, and proportional reasoning (Lobato & Ellis, 2010). Therefore, as stated by 

Vergnaud (1983, 1988), multiplication, division, fractions, ratios, and rational numbers are not mathematically 

independent of one another. Therefore, Vergnaud placed these concepts within a larger context that he called the 

multiplicative conceptual field. For Vergnaud (1988), a conceptual field is ―a set of situations, the mastering of 

which requires mastery of several concepts of different natures‖ (p. 141). Two main conceptual fields are 

additive field and multiplicative field (Vergnaud, 1983, 1988). Additive field include a set of problems 

involving addition, subtraction, difference, interval, and translation; and multiplicative field include a set of 

problems involving multiplication, division, fraction, ratio, and similarity (Vergnaud, 1983, 1988). 

 

One of the persistent issues in proportions is the confusion about the classification of students‘ strategies as 

either within or between (Lamon, 2007). For Lamon (2007), the confusion results from different uses of the 

terms within and between in the earlier research. Lamon (2007) stated that using terminologies ―within or 

between measure spaces‖ or ―within or between systems,‖ which were used by Vergnaud (1983, 1988), can help 

us eliminate this confusion (p. 634). According to Lamon (2007), ―Measure spaces usually refer to different sets 

of objects, different types of quantities, or different units of measure‖ (Lamon, p. 634). For example, if a certain 

car covers a distance of 60 miles in 1 hour, then driving at the same rate it can cover 120 miles in 2 hours. In 

this example, our measure spaces are: the distance (Measure space one or M1) and the number of hours 

(Measure space two or M2). Therefore, the ratio 60 miles/120 miles and 1 hour/2 hours are examples of within 

measure space ratios. On the other hand, the ratio 60 miles/1 hour and 120 miles/2 hours are examples of 

between measure space ratios. Vergnaud (1983, 1988) discussed three kinds of multiplicative structures: 

isomorphism of measures, product of measures, and multiple proportions other than product. In the 

isomorphism of measures structure, there is a simple direct proportion between two measure-spaces M1 and M2 

(Vergnaud, 1988, p. 129). The product of measures structure ―consists of the Cartesian composition of two 

measure-spaces, M1 and M2, into a third, M3‖ (p. 134). The problems in this structure are concerned with area, 

volume, Cartesian product, and work. In the multiple proportions other than product structure, a measure-space 

(M3) is proportional to two different independent measure-spaces (M1 and M2) (Vergnaud, 1988, p. 138). This 

type of proportional relationship is also called a jointly proportional relationship.  

 

Vergnaud (1983) distinguished the second and third multiplicative structures as follows: In the product of 

measures structure, the constant of the proportionality is equal to 1, but the same is not true for the multiple 

proportions other than product structure. For example, the distance (D) a car traveled in some fixed time (T) at a 

constant speed (V) can be expressed by the equation V * T = D. In this example, the equation demonstrates a 

product of measures structure because the constant of the proportionality (k) is 1. On the other hand, the 

multiplicative relationships among the number of people (P) works in a bakery, number of minutes (M) that they 

need to frost some number of cupcakes (C) can be expressed by the equation P * M = kC, where k≠1 represents 

the constant of proportionality, which is interpreted as ―number of person-minutes per cupcake.‖ Although the 

product of measures and multiple proportions other than product structures contain an inversely proportional 

relationship between quantities multiplied, Vergnaud (1983, 1988) did not focus on this relationship in detail. 

Vergnaud (1988) called the problems of the type of isomorphism of measures as simple proportion problems 

and called the problems of the last two structures as multiple proportions problems. As noted by Vergnaud 

(1988), multiple proportions problems have not been researched widely, and most teachers are unaware of 

students‘ difficulties with these problems.   

 

 

Method 

 

Participants and Context 

 

A multiple-case study methodology (Yin, 1993, 2009) was used in designing this study. Because the purpose of 

this study was to explore the PSTs‘ proportional reasoning, each individual participant constituted a case. The 
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study was conducted in one large public university in the Southeast United States. This university was selected 

because it offers separate programs leading to certification for secondary grades (6-12) mathematics teachers 

and middle grades (4-8) mathematics teachers. The secondary grades program includes one content course with 

a focus on multiplicative relationships, ratios, and proportions; the middle grades program includes two such 

content courses. Since the focus of this study involved challenging mathematical problems, PSTs with some 

college level experience on direct and inverse proportions were preferred. Therefore, the PSTs who attended or 

were attending one of these two courses were selected. In the fall semester of 2014, I contacted two course 

instructors, and 10 PSTs (six from secondary grades program and four from middle grades program) agreed to 

participate in this study. Based on the information that they gave about their background on the direct and 

inverse proportions, two female secondary grades (Amy and Mary) and two female middle grades (Natalie and 

Emily) PSTs were recruited for the study. To maintain confidentiality, all real names were replaced with 

pseudonyms. Moreover, the PSTs were given 10 dollars incentive for each hour of participation. 

 

 

Data and Analysis 

 

The data was collected through semi-structured clinical interviews (Bernard, 1994). Two video cameras were 

used during the interviews: One focused on the participant‘s written work, and the other focused on the 

participant and the interviewer. I conducted all of the interviews, and one graduate student operated the video 

cameras. Each interview lasted between 45 minutes and 90 minutes. A total of 18-hours video data were 

collected for this study. The steps that I followed to collect and analyze the interview data were as follows: First, 

I conducted semi-structured interviews for data collection. Second, the interviews were transcribed verbatim. 

Third, I open coded the interview transcripts line-by-line for the PSTs‘ reasoning strategies, and if necessary 

wrote memos about these strategies. Fourth, I created a code file for each task in Microsoft Excel. Then, I 

counted the number of occurrences of each code and entered that number in the record for the task. Fifth, I 

returned to the interview transcripts and recoded these to strengthen the reliability of the results. I then 

aggregated similar codes together to determine the connections among the codes and to identify relationships. In 

the last step of the data analysis, I wrote cross-task analyses of each case based on the reasoning strategies that I 

identified.  

  

 

Mathematical Tasks 

 

The study involved two hands-on—Gear and Balance—and two real-world tasks—Bakery and Speed (Table 1). 

For the purposes of this study, I developed the Gear and Balance tasks and adapted Bakery and Speed tasks 

from Beckman (2011). The mathematical tasks involved either single or multiple proportional relationships and 

all of the problems were missing-value word problems. In the Balance and Gear tasks, the PSTs were provided 

with a mini number balance system and plastic gears, respectively (Figure 1). In Table 1, some of the problem 

examples were presented; however, during the interviews, the PSTs were provided with problems that involved 

varying numbers and letters.   

 

 

 
Figure 1. Meshed plastic gears and a mini number balance system (Images retrieved from 

https://www.pexels.com/photo/3d-co-ordination-gear-gears-317089/ and http://www.eaieducation.com) 
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Table 1. Descriptions of the problems 

Task Problem Examples Problem Descriptions 

G
ea

r 

 
a) Please calculate the number of notches of 

Gear B, with a 2-cm radius, given that 

Gear A had a 3-cm radius and 12 notches. 

b) Please calculate the number of revolutions 

of Gear A, given that Gear B revolved 6 

times.  

There was a directly proportional 

relationship between the size of a gear and 

its number of notches, and an inversely 

proportional relationship between the 

number of revolutions that a gear made 

and its size. (Single Proportion) 

 

B
ak

er
y

 

At a bakery, 3 people can frost a total of N 

cupcakes in T minutes.  

a) How many cupcakes could be frosted by 

2 people in T minutes? 

b) How long would it take for 1 person to 

frost 2N cupcakes? 

 

The PSTs explored one inversely and two 

directly proportional relationships among 

the number of people, number of cupcakes, 

and number of minutes. (Multiple 

proportions) 

B
al

an
ce

 

 

W1 numbers of weights were hung on one 

side of the balance that has a D1 distance 

from the center. To balance the system on 

the other side, you want to hang W2 number 

of weights. What would be the distance, D2, 

in terms of D1, W1, and W2, so the system 

could be balanced? 

 

The PSTs explored an inversely 

proportional relationship between the 

number of weights hung and distance (how 

far from the center a weight hung). (Single 

Proportion) 

S
p

ee
d

 

 

Knowing that a car covers the distance 

between two markers in 90 seconds driving 

at 60 mph then what must be its speed to 

cover the same distance in 60 seconds? 

The PSTs investigated one inversely and 

two directly proportional relationships 

among the distance, speed, and time. 

(Multiple proportions) 

 

In the direct proportion problems, there was a constant ratio relationship between two quantities. For example, 

in the Gear task, there was a constant ratio relationship between the size of a gear and its number of notches. 

The PSTs were provided two gears, which were thought to be meshed, and they were asked to calculate either 

the number of notches or the radius of the gears. The mathematical structure of the relationship between the 

radius (r) and number of notches (N) can be expressed with the statement r (cm) * N/r (notches/cm) = N notches 

in which N/r (notches/cm) can be interpreted as N/r notches per 1 cm radius. This mathematical statement can 

be best explained with a multiple batch perspective. Assuming ―N/R notches per 1 cm‖ as a batch, which is a 

unit rate, an expert can iterate this batch r times to calculate N notches.  

 

In the inverse proportion problems, there was a constant product relationship between the two covarying 

quantities. For instance, in the Gear task, the product of the number of revolutions (R) and number of notches 

(N) yielded the total number of notches revolved on a gear, which was constant. Hence, the multiplicative 

structure of this constant relationship could be expressed with the statement R (revolutions) * N 

(notches/revolution) = NR (notches). In the Balance task, because the PSTs needed to balance the system on two 

sides, they were required to have the same value, which was determined by multiplying the number of weights 

and the distance from the center of the system, on both sides. Moreover, in the Bakery task, there was an 

inversely proportional relationship between the number of people and number of minutes. Therefore, the 

contexts of the Gear, Balance, and Bakery tasks were appropriate for facilitating the PSTs‘ determination of 

inversely proportional relationships. 

 

In the multiple proportions problems, identifying multiplicative relationships were expected to be more difficult 

than single proportion problems because they involved more than two quantities. Hence, the PSTs needed to fix 

the value of a quantity as constant to determine the relationship between the remaining two quantities. In the 

Bakery task, the relationships among the number of people (P), number of minutes (T), and number of cupcakes 

(C) can be expressed with the statement P (people) * T (minutes) = C (cupcakes) * PT/C (person-

minutes/cupcake), where ―person-minutes per cupcake‖ represented the constant of proportionality. Whereas, in 

the Speed task, the relationships among the distance (D), time (T), and speed (V) can be expressed by the 

equation T (hours) * V (miles/hour) = D (miles). 

 

 



107 
 

Int J Res Educ Sci 

Results and Discussion 

 

The analysis of the selected PSTs‘ reasoning on the direct, inverse, and multiple proportions problems was 

presented for some tasks in the following pages. There were no deletions in the transcripts provided. Pauses 

were shown with ellipses and actions were described within square brackets. 

 

 

The Pre-service Teachers’ Reasoning on the Direct Proportion Problems 

 

Amy 

 

Amy usually attended to numerical multiplicative relationships between measure spaces when determining 

directly proportional relationships between two covarying quantities. For example, in the Speed task, she 

successfully calculated the speed of a car, given that it covered 2 miles in 100 seconds, to be 72 mph using a 

scientific unit conversion method (Figure 2a). When asked if there was a relationship between the distance and 

time, she correctly determined a proportional relationship and generated the ratio table in Figure 2b. 

 

Amy: It should be proportional I think. Yeah this should be proportional. 

Int: Please tell me why it is proportional. 

Amy: I mean, so you are going at a constant speed, okay so then miles and seconds [drawing a ratio 

table], miles is here and seconds and then we know this relationship 2 and 100 and we know 1 is 50 and 

3 is 150 and 4 is 200 and so on.   

Int: So, then you think it is proportional? 

Amy: Yeah because all these are all these have to same like ratio this 1 over 50, and 2 over 100 is going 

to be 1 over 50…3 over 150 is 1 over 50, it keeps going.  

 

The exchanges and Figure 2b confirmed that Amy‘s reasoning was sufficient to see that driving at a constant 

speed was yielding a directly proportional relationship between the distance and time. Because Amy did not 

consider the referent units in her explanation of the directly proportional relationship between miles and 

seconds, she appeared to attend to the numerical multiplicative relationship between numbers and constancy of 

the quotients when justifying her determination of the proportional relationship. 

 

 
(a)                                                                  (b) 

Figure 2. (a) Amy‘s scientific unit conversion method; (b) Amy‘s expression of the directly proportional 

relationship between distance and time 

 

Mary 

 

Although, Mary recognized the multiplicative relationships in some tasks, her main reasoning strategy for 

determination directly proportional relationships was that she generally attended to constancy of rate of change 

and qualitative relationships. For instance, in the Bakery task, when asked to talk about the relationship between 

the number of people and number of cupcakes, Mary used the information confirming that three people frost 12 

cupcakes in T minutes to draw a linear graph (Figure 3). She then determined the relationship as a proportional 

relationship. 

 

Int: What is the relation…, what do you think the relation is? 

Mary: Between cupcakes and people? 

Int: Yeah. 

Mary: They are proportional. 
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Int: What was your main idea to graph it? Like, when I ask you to identify the relationship between 

these two, like the number of cupcakes and people, you said I can graph it. What was the reason for 

graphing to identify the relationship? 

Mary: So, I could show there was a linear relationship. So, that the…the ratio…, there is a constant 

ratio between the people and the cupcakes. 

 

According to these exchanges, Mary‘s reason for drawing the graph was to show that it was linear and that there 

was a constant ratio relationship between the number of people and cupcakes. Her strategy of drawing a graph to 

determine a relationship suggested a possible coordination of a directly proportional relationship with the 

linearity of its graph. 

 
Figure 3. Mary‘s expression of the proportional relationship between the number of people and number of 

cupcakes 

 

The exchanges above also included the first instance of Mary‘s mentioning the term constant ratio relationship. 

When asked what she meant by the constant ratio, Mary explained:  

 

Mary: Uhh, so we have 0, 0; 1, 4; 2, 8; 3, 12, and umm so this [pointed at 12 cupcakes] is three times 

the amount of the one person; this [pointed at eight cupcakes] is two times the amount of whatever is 

made by the first person.  

Int: So, the ratio is here? 

Mary: I don‘t know. It increases by four every time. Whatever you do to the … like if you look at the 

original, the 1 to 4. Whatever you do from the 1 to get to the…any amount of people that is you do to 

the amount of cupcakes. 

 

These exchanges suggested that Mary was attending to a multiplicative relationship within measure spaces, 

―…so this [pointed at 12 cupcakes] is three times the amount of the one person, this [pointed at eight cupcakes] 

is two times the amount of whatever is made by the first person,‖ and the constancy of the increments within 

measure spaces, ―It increases by four every time.‖ Although Mary used the term constant ratio relationship, 

there was not any indication that she was attending to the multiplicative relationship between measure spaces. 

Hence, these data suggested that she might have used the term constant ratio relationship to indicate constancy 

of the rate of change. Her ratio table in Figure 3 confirmed this conjecture about her reasoning because she was 

attending to the constancy of the increments within measure spaces. Therefore, these exchanges and Figure 3 

implied that Mary‘s determination of the constant ratio relationship between the number of people and cupcakes 

was mainly based on her attention to the constancy of the rate of change.  

 

 

Natalie  

 

Natalie usually made numerical multiplicative comparisons between measure spaces when solving the Gear 

problems. In the remaining tasks, she inclined towards to the multiplicative relationships within measure spaces. 

For instance, in the Gear task, setting up a 
    

          
 

 

 
   

         
 proportion and cross-multiplying the values, 

Natalie calculated the number of notches of Gear B, with a 
 

 
 cm radius, to be four notches, given that Gear A 

had a 3-cm radius and 10 notches. When asked if she could use another strategy, Natalie said she could make a 

table (Figure 4) and later explained:  

 

Natalie: So, you can do…let‘s do it for every, since we are working with this, let‘s do it for every fifth 

of a centimeter. So, for one notch gives you…let‘s do it per notch instead. So, you have notches here 

and then centimeters, you know for 10 notches you have 3 centimeters.  And then you know for 1 notch 
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you have three-tenths of a centimeter. So, for 2 notches you are going to have 0.6 because for 1 notch is 

0.3. If you add another notch for 0.3 centimeters, you just add 0.6. So, then you have for 3 notches, it‘s 

going to be 0.9 because you added another 0.3 and then for 4 notches, it‘s going to be 1.2 and so on 

until you get 3 centimeters for 10. And you would hopefully notice that six-fifth, you are looking for 

six-fifth, and since you are going to be working with decimals, I would say put that in decimal form 

first, which is 1.2 centimeters. And then once you hit this 1.2 you would see, oh, okay, for 1.2 

centimeters, I would have 4 notches. 

 

In her explanation, Natalie appeared to attend to the repeated addition of batches as indicated by her double 

counting approach (Figure 4). First, knowing that there were 10 notches for a 3 cm radius, she determined a 1-

notch-to-0.3-cm radius relationship as one batch, which was the unit rate. By repeatedly adding this batch, she 

calculated a 1.2-cm-radius-to-4-notches relationship. Hence, to a certain degree, her reasoning in this task was 

attuned to the multiple batches perspective. 

 

 
Figure 4. Natalie‘s ratio table strategy 

 
A few exchanges later, when the second interviewer asked how she was making sense of her table from the 

meaning of proportional relationships, Natalie explained: 

Natalie: It just shows that the proportions…all of these relationships, all these ratios [pointed at 1 notch 

and 0.3 cm] are equivalent. The proportions are equal; they stay consistent throughout the table. So, but 

if this was 3 and this was 0.8, it would not be proportional. If this was anything but 0.9 for 3 notches it 

would not be proportional.   

Int: It is because? 

Natalie: Because of the unit rate we found from the original ratio we were given. 

 

Natalie‘s explanation ―So, but if this was 3 and this was 0.8, it wouldn‘t be proportional. If this was anything but 

0.9 for 3 notches it would not be proportional‖ provided evidence for her understanding of a constant ratio 

relationship. Therefore, these data showed that Natalie‘s attention to the unit rate assured the correct conclusion 

that the number of notches and radii were in a constant ratio. 

 

 

Emily  

 

Emily‘s reasoning was very much similar to Natalie‘s. She made numerical multiplicative comparisons between 

measure spaces when solving the gear problems but inclined towards to the multiplicative relationships within 

measure spaces in the remaining tasks. For example, in one of the gear problems, I asked Emily to calculate the 

size of Gear D with 21 notches, given that Gear E with a 4-cm radius had 14 notches. She explained: 

Emily: Okay. I can just do the same as I did before. So, I have 4 over 14 which is two-sevenths. So, this 4 cm 

is two-sevenths of 14 notches, and so I have to ask myself what x amount of cm is two-sevenths of 21. So, I 

have 21 times two-sevenths which is 42 over 7 which is 6 cm, yeah for D.  

 

Although Emily considered the referent units in the statement, ―...4 cm is two-sevenths of 14 notches,‖ her 

reasoning suggested that she might have been attending to a numerical multiplicative relationship between the 

radius and number of notches. Emily‘s statement, ―…so I have to ask myself what x amount of cm is two-

sevenths of 21,‖ showed that she was searching for a measurement division (e.g., Greer, 1992). Therefore, she 

multiplied 21 by 2/7 and found that the radius of Gear D was 6 cm. In the multiplication statement, Emily used 

2/7 without its referent unit—cm/notch—and did not explain that it was showing the constant ratio relationship 

between the radii and number of notches. Therefore, she might have been attending to a numerical 

multiplicative relationship between measure spaces. 
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Some exchanges later, I asked Emily to calculate the number of notches on Gear B with a 6-cm radius, given 

that Gear A had a 3-cm radius and m notches. In her solution, Emily made multiplicative comparisons within 

measure spaces rather than making multiplicative comparisons between measure spaces and explained: 

 

Emily: Well, I think since well I would say that if this is [pointing out 3 cm and m notches] unit rate so 

I would have basically 1m like there is a certain amount of notches for 3 cm. So, since I do not know 

what this [pointed at the number of notches of Gear B] is and I have 6-cm, I double this [pointed 3-cm] 

so I would just say that 2m will give me 6 cm so we are looking for. 

 

In the previous problems of this task, Emily was given numbers that she used to identify the numerical 

multiplicative relationships between measure spaces. In the current problem, she identified the multiplicative 

relationship within measure spaces and correctly determined the number of notches to be 2m. Emily‘s 

inclination towards reasoning within measure spaces might have been based on the number of notches being 

represented by the letter m and the fact that doubling the numbers of centimetres and notches allowed working 

with the same units. 

 

 

The Pre-service Teachers’ Reasoning on the Inverse Proportion Problems 

 

Amy  

 

In one of the problems of the Gear task, Amy needed to calculate the number of notches of Gear K, given that it 

completed two-thirds of a revolution, when Gear F, with eight notches, revolved three times. Amy explained:  

Amy: Let's see revolves three times and has eight notches, so that means like in total it goes through 24 notches 

right? Because it revolves three times with eight notches, so this is [pointed at Gear F], it goes through 24 

notches in this three revolutions…and then K revolves two-thirds of a time and goes through the exact same 

number of notches.   

 

Int: How do you know it goes through the same number of notches? 

Amy: Because I guess like the reason why I am thinking that is because like in these three revolutions it 

[pointed at Gear K] goes through…goes through two-thirds of a revolution but because we know that F 

has eight notches we know that in total in three revolutions it is going to go through 24, so that we can 

say that. Okay I know, that [pointed at Gear K] is going to go through 24 notches in two-thirds of a 

revolution.  

 

For Amy, Gear F was ―going through‖ a total of 24 notches in three revolutions, which she calculated by 

multiplying three revolutions and eight notches. By stating, ―…K revolves two-thirds of a time and goes through 

the exact same number of notches,‖ Amy determined that both gears were rotating the same total number of 

notches. Hence, for Amy, Gear K needed to ―go through‖ 24 notches in two-thirds of a revolution. Later, 

multiplying 24 notches by 3/2, she correctly calculated the number of notches of Gear K to be 36 notches. 

Amy‘s explanation in this problem provided evidence for her consideration of 24 notches as constant when 

explaining the inverse relationship between the number notches and revolutions.  

 

Some exchanges later, Amy worked on a new problem. In this problem, she needed to calculate the number of 

revolutions of Gear L, with eight notches, given that Gear M had 14 notches and revolved four times. She used 

the same idea––two gears go through the same number of notches––and calculated the answer to be seven 

revolutions. When asked if she could use a ratio table strategy to solve the same problem, Amy was able to 

generate one for the relationship between the number of notches and revolutions depicted in the problem (Figure 

5). She recognized that the product of all rows (notches and revolutions) was equal to 56: 

 

Amy: Okay, so well that has to be 56, I mean this is 56 here. I just know, I just kind of know that like 

all of these, like these two [pointed at notches and revolutions] have to multiply to give me 56 like 

every single time. So, I am saying what times two is 56 and that is, I do not know, 28. And then 56/3, I 

do not [know] what that is.  

Int: You can leave like that. Knowing that 56, you said 56 is the?  

Amy: is the product of notches and revolutions. 

 

In the exchange, Amy used multiplication and attended to the multiplicative relationships between the number 

of notches and revolutions to discuss the constant product relationship and explicitly stated that 56 was the 

product of notches and revolutions. Thus, Amy‘s idea of two gears ―going through the same number of 
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notches,‖ the exchanges, and Figure 5 suggested her understanding of the inversely proportional relationship 

between the number of notches and number of revolutions. 

 

 
Figure 5. Amy‘s ratio table expressing an inversely proportional relationship 

 

 

Mary  

 

Similar to Amy, Mary also recognized that two meshed gears had to rotate the same number of notches in some 

number of revolutions. In the given gear problems, she multiplied the number of notches and revolutions of one 

gear and equated this value to the product of number of notches and revolutions on the second gear. On the other 

hand, unlike Amy, who attended to multiplicative relationships, Emily usually attended to static points and 

swapping pair of numbers when characterizing inverse relationships. For example, when asked to draw the 

graph of the relationship between the number of notches and revolutions using the 8-notches-to-3-revolutions 

relationship, Mary drew an inversely proportional graph (Figure 6) and determined an inverse relationship 

between the number of notches and revolutions: 

 

Mary: These are inversely related. 

Int: Okay, how do you know these are inversely…? 

Mary: Because when there is 24 notches, there is only one revolution, but when there is 24 revolutions, 

there is one notch and you can find the inverse relationship between them. 

Int: When you are saying inverse relationship, what do you imply with inverse? 

Mary: I mean, like 24 over 1 that is the inverse of 1 over 24.   

Int: Okay, because of that reason, you think that is the inverse…? 

Mary: Yes and you can find that throughout the entire graph. 

Int: Do you mean you will have an inverse of some…one point appears here [I pointed at the inversely 

proportional graph]? 

Mary: Every point on the graph has an inverse somewhere else on the graph. 

 

Mary stated that 
          

            
 and 

         

             
 ratios were the inverses of 

       

              
 and 

         

             
 ratios, 

respectively (Figure 6). Her statement ―…24 over 1 that is the inverse of 1 over 24‖ suggested that she was 

attending to 24/1 and 1/24 being reciprocal of each other when explaining the inverse relationship. She also 

stated that ―Every point on the graph has an inverse somewhere else on the graph.‖ It appeared that for Mary, 

the points (1 notch, 24 revolutions) and (24 notches, 1 revolution) were the inverses of each other because the 

values of the quantities were swapped. Therefore, Mary attended to the pair of values of two quantities being 

swapped when determining an inverse relation between the number of notches and revolutions. While Mary‘s 

conjecture of pair of values being swapped in an inversely proportional graph was correct, it was not sufficient 

to distinguish proportional relationships from nonproportional relationships.  
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Figure 6. Mary‘s inversely proportional graph and ratio table 

 

A few exchanges later, I asked Mary if she could express the relationship between the number of notches and 

revolutions with a ratio table. She generated the ratio table in Figure 6 and explained: 

 

Mary: The amount of notches and the amount of revolutions…every time we multiply together, they 

equal 24. 

 

In the explanation above, Mary explicitly stated the constant product relationship between the number of 

notches and revolutions. Because Mary also explained 24 as ―the total notches travelled in both gears,‖ the 

context of the Gear task seemed to facilitate her understanding of this constant product relationship.  

 

 

Emily  

 

The two middle grades teachers, Natalie and Emily, both attended to inverse qualitative relationships—one 

quantity is increasing and the other quantity is decreasing—when determining inversely proportional 

relationships. Similar to Amy and Mary, they recognized constancy of the products in the Gear and Balance 

tasks but not in the remaining inverse proportion tasks. For instance, in the Balance task, Emily explored an 

inversely proportional relationship between the number of weights hung on a balance and the distance from the 

center of the balance. To clarify what the task was about, I explained that W1 number of weights was hung at 

D1 distance on one side of the balance, and W2 number of weights was hung on the second side. The first 

problem was about determining D2, the distance in the second side, in terms of D1, W1, and W2. By hanging 

different variations of weights, Emily recognized that the product of the number of weights and distance was 

equal on both sides. Therefore, she expressed the relationship between the number of weights and distance with 

W1*D1 = W2*D2. She then explained: 

 

Emily: Well I think, well I was, I think that W1 or yeah W1 times the distance, distance one would 

have to equal, would has to equal W2 times the distance in order to balance [she wrote W1D1=W2D2]. 

So, in order to find out what D2 is, I would just do W1 times D1 divided by W2.  

Int: How do you know that [I pointed at W1D1] one was equal to this two [I pointed at W2D2] to 

balance? 

Emily: Well if they are balanced, like they have to be the same on both sides in order to balance. 

 

The exchanges provided evidence that Emily‘s recognition of the inversely proportional relationship between 

the number of weights and distance was based on her understanding of balancing, ―Well if they are balanced, 

like they have to be the same on both sides in order to balance.‖ It appeared that Emily determined this inversely 

proportional relationship by experimenting on the balance system, but it was possible that she might have had 

past instruction on balancing and that might have helped her in determining the inversely proportional 

relationship. Hence, the context of balancing seemed to be helpful in Emily‘s determination of the inversely 

proportional relationship. 

 

Some exchanges later, I asked Emily if she could generate a ratio table from the values of quantities that she 

used to balance the system on one side, given that on the other side six weights were hung on a 4-cm distance 

from the center. Using the balance formula, Emily multiplied 6 by 4 and got 24 and explained that she needed 

combinations of 24 on the other side: 
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Emily: Okay, so I guess the first way is try about it is that I have 4 cm and then six weights, so based 

on this W1D1=W2D2, I started off by thinking okay well I multiply this and that is 4 times 6 is 24 

and…so, what are the like what are the…possible combinations that I can come up with. So, I can 

do…I can do 4 and 6, I can do…four weights on 6 cm away. So, I can try that first [she hung six 

weights at 4 cm], that works. And then I could do…three weights, so three weights on 8 cm.   

Int: Do you want to talk about anything? 

Emily: Well all these [circled pairs of weights and distances] values here like if I multiply these 

together they have to equal 24 for to balance.   

Int: What is that 24? 

Emily: Twenty four is the amount of distance and weight of the first side. Yeah, like I showed here that 

this is four weights on the distance of six from the center, so that is why it has to be 24.  

 

Emily searched for ―possible combinations‖ of 24, and by circling each pair (Figure 7), she showed that the 

products were all equal to 24. When asked what 24 was, she said, ―Twenty four is the amount of distance and 

weight of the first side.‖ Therefore, these exchanges provided evidence for Emily‘s explicit attention to the 

constancy of the products of number of weights and distance. These data suggested that Emily‘s recognition of 

the constant product relationship was based on her attention to the numbers or, as I discussed in the preceding 

paragraph, she might have recalled this constant product relationship from a past instruction on balancing. 

 

 
Figure 7. Emily‘s ratio table for expressing the constant product relationship between the number of weights and 

distance 

 

 

The Pre-service Teachers’ Reasoning on the Multiple Proportions Problems 

 

Mary  

 

In the Speed task, Mary preferred reasoning within measure spaces and used a scientific unit conversion 

strategy, a similar example of this strategy is provided in Figure 2a. For instance, in one of the problems, she 

needed to calculate the speed of a car that covered a certain distance in 60 seconds, given that another car 

covered the same distance in 90 seconds at 60 mph. When asked what her initial impression was, Mary 

determined the speed to be 90 miles an hour: 

 

Mary: It is going to be 90 miles an hour. 

Int: How do you know that it is 90 mph? How did you get that quick? 

Mary: I do not know. Because he is driving 60 miles an hour, so he is driving a mile a minute. So, he 

drove a mile and a half because he drove for 90 seconds. So, if we want to drive a mile and a half in 60 

seconds…you would have to travel a mile and a half in a minute. 

Int: Then how do you know your speed is 90? 

Mary: Because 90 miles in an hour divided by 60 seconds is 1.5. 

 

In the Gear and Balance tasks, Mary determined inversely proportional relationships based on numbers 

swapping. In this task, the numbers were also swapped, but she did not see that. Instead, Mary seemed to be 

focusing on the numerical relationship, without attending to the referent units, between values of the speed and 

time because she incorrectly stated the relationship among speed, time, and distance by saying, ―Because 90 

miles in an hour divided by 60 seconds is 1.5.‖ Later, dividing 90 seconds by 60 mph, she wrote 1.5 (Figure 8) 

without its units that also suggested her attention to the relationship between numbers. To further investigate 

this possibility, I asked her if she was getting ―miles‖ from the division of ―seconds‖ by ―miles per hour,‖ and 

Mary stated, ―I don‘t know if it makes sense that I write 1.5 miles.‖ Her response was a reflection of her 

confusion about the accurateness of her distance expression. Later, when she was reasoning out her answer, she 

incorrectly explained that multiplying 1.5 miles by 60 seconds yielded 90 mph (Figure 8). Mary‘s incorrect 
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expressions indicated that her difficulty with using appropriate referent units and expressing multiplicative 

relationship among quantities in the multiple proportions problems.  

 

 
Figure 8. Mary‘s initial distance formula 

 

 

Natalie and Emily  

 

In the Bakery task, I asked Natalie if she could find a formula to represent the relationships among the number 

of people, number of cupcakes, and time. She could not find a formula but explained that the formula that she 

expected to get should involve multiplication and division, not addition and subtraction. Similarly, in the Speed 

task, Natalie thought Time = Speed × Distance to be the correct formula to express the relationships among the 

quantities but recognized that it was not the correct one. Even though she spent some time trying to generate a 

formula, she could not obtain one and expressed her difficulty saying, ―I don‘t know.  I‘m not good with finding 

the equations at all.‖ Emily also experienced similar difficulties. When I asked her to find a formula to express 

the relationships in the Bakery task, she generated the P = C/T formula. Emily tested this formula on one of the 

problems that she solved earlier and recognized that the formula was not yielding the correct answer. Thus, the 

need for a constant in the formula made it challenging for Emily to obtain the correct formula. 

 

 

Conclusions 
 

This study investigated how pre-service middle and high school mathematics teachers determine directly and 

inversely proportional relationships presented through hand-on and real-world missing-value word problems. 

This is a critical topic, because existing mathematics education research documents numerous difficulties, some 

of which I discussed earlier in the literature review that students and teachers have with this topic. The studies in 

mathematics education literature generally use word problems with single proportional or nonproportional 

relationships to investigate how students or teachers reason about proportional relationships. However, in this 

study, the PSTs solved single and multiple proportions problems that were presented through hands-on and real-

world mathematical tasks. 

 

Regarding to the first research question, the PSTs‘ responses to the proportion problems showed their tendencies 

to describe relationships between quantities either as proportional relationship or as inverse relationship. The 

PSTs‘ responses to the given problems suggested that identifying directly proportional relationships was easier 

for them than identifying inversely proportional relationships. Their reasoning strategies when determining 

directly proportional relationships generally included attention to qualitative relationships—two quantities are 

increasing (or decreasing) together—, constancy of the rate of change, and multiplicative relationships within 

and between measure spaces (less frequently). However, they usually relied on the qualitative relationships—

when a quantity increases, the other decreases—when determining inversely proportional relationships. Because 

the mathematical tasks included quantities with different units, identifying multiplicative relationships within 

measure spaces seemed easier for the PSTs than identifying multiplicative relationships between measure 

spaces. Thus, the PSTs tended to form multiplicative relationships within measure spaces. On the other hand, 

when they made multiplicative comparisons between measure spaces, they attended to the numerical 

multiplicative relationships.  

 

In terms of the second research question, the Gear and Balance tasks, in which physical devices (i.e., plastic 

gears, a mini number balance system) were provided, appeared to facilitate the PSTs‘ understanding of inversely 

proportional relationships more than the Bakery and Speed tasks. Although all four PSTs recognized the 

constancy of the products and reasoned about the inversely proportional relationships in the Gear and Balance 

tasks, none of them recognized the constancy of the products in the Bakery and Speed tasks. In the Gear task, 

the context of the problem eased the PSTs‘ determinations of the constant product—the total notches moved—

by coordinating the number of groups (where a group corresponded to one rotation) and the size of groups 
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(where the size was the number of notches). Similarly, in the Balance task, the PSTs made experiments to 

balance the system on both sides. When doing that they empirically determined that the product of the number 

of weights hung and their distance from the center was equal for both sides. Thus, there may be important 

differences in how students reason about multiplicative relationships among the tasks. This result encourages 

using hands-on activities such as the ones used in this study in teaching directly and inversely proportional 

relationships.  

 

When solving multiple proportions problems (i.e., problems in the Bakery and Speed tasks), the PSTs usually 

fixed one quantity at a time to explain the relationship between the remaining quantities. In this study, none of 

the PSTs was able to obtain a complete formula to express the multiplicative relationships among the quantities 

in the Bakery task, and most of them had difficulty obtaining the correct formula in the Speed task. The PSTs‘ 

difficulty expressing multiplicative relationships between quantities in the multiple proportions problems 

suggested possible constraints in their coordination of the multiplicative relationships when more than two 

quantities were present.  

 

 

Notes 
 

This manuscript was a part of the author‘s unpublished doctoral dissertation entitled ―Exploring preservice 

middle and high school mathematics teachers‘ understanding of directly and inversely proportional 

relationships‖ that he conducted under the guidance of Dr. Andrew Izsák at the University of Georgia, Athens, 

GA. 
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